Refine
Document Type
- Article (5)
- Conference Proceeding (2)
- Preprint (1)
Language
- English (8)
Has Fulltext
- no (8)
Is part of the Bibliography
- yes (8)
Keywords
- infrared thermography (2)
- 10 MW wind turbine (1)
- Actuator disc (1)
- Actuator line (1)
- Angle of Attack (AoA) (1)
- Axial induction factor (1)
- BEM (1)
- Blade element momentum method (BEM) (1)
- CFD (1)
- CFD-CSD coupling (1)
Institute
This paper presents a fluid-structure coupled simulation tool for high-fidelity simulations of wind turbine rotors. Coupling the open source Computational Fluid Dynamics (CFD) code OpenFOAM and the inhouse structural solver BeamFOAM, the developed tool allows the analysis of flexible wind turbines blades by means of CFD without a significant increase in computational costs. To demonstrate the capabilities of the coupled solver, the aero-elastic response of the NREL 5 MW reference wind turbine is computed for various conditions and specific results are compared to findings of other authors. The solver framework is then used to investigate the effect of blade deformations on aerodynamic key parameters such as power, thrust and sectional forces. It is shown, that the structural deformations have a clear influence on the aerodynamic rotor performance. Especially for the case of yawed inflow, significant implications can be observed in terms of loads and local induction factors. Compared to the fluid-structure coupled framework, the rigid CFD solver underpredicts the forces acting on the blades for most of the cases. Consequently, the presented results are expected to contribute to improve the correction models used in aerodynamic models of lower fidelity like those based on the Blade Element Momentum theory.
Reducing Operational Costs of Offshore HVDC Energy Export Systems Through Optimized Maintenance
(2020)
For the grid connection of offshore wind farms today, in many cases a high-voltage direct current (HVDC) connection to the shore is implemented. The scheduled maintenance of the offshore and onshore HVDC stations makes up a significant part of the operational costs of the connected wind farms. The main factor for the maintenance cost is the lost income from the missing energy yield (indirect maintenance costs). In this study, we show an in-depth analysis of the used components, maintenance cycles, maintenance work for the on- and offshore station, and the risks assigned in prolonging the maintenance cycle of the modular multilevel converter (MMC). In addition, we investigate the potential to shift the start date of the maintenance work, based on a forecast of the energy generation. Our findings indicate that an optimized maintenance design with respect to the maintenance behavior of an HVDC energy export system can decrease the maintenance-related energy losses (indirect maintenance costs) for an offshore wind farm to almost one half. It was also shown that direct maintenance costs for the MMC (staff costs) have small effect on the total maintenance costs. This can be explained by the fact that the additional costs for maintenance staff are two orders of magnitude lower than the revenue losses during maintenance.
Navier-Stokes actuator disc models have become a mature methodology for investigating wind turbine rotor performance with numerous articles published annually making use of this approach. Despite their popularity, their ability to predict near wake expansion remains questionable. The objective of this paper is to analyse the predictive ability of actuator disc models and compare results with other popular types of codes. The methodology employs the use of an actuator disc Computational Fluid Dynamics approach to model an actuator disc and a real (finite bladed) turbine case. Results are validated with existing experimental data. In addition, results from an actuator line model with and without tip corrections and a 3D vortex panel method are presented to aid the discussion. Results show that all models give a poor wake expansion prediction particularly in the inboard to mid-board areas. A good prediction is found in the outboard regions. In addition, contrary to the well known positive effects of tip corrections on load prediction, this work shows that this does not bring any particular benefit on wake expansion prediction. The conclusions from this work help to guide the use of actuator disc models in more complex flow scenarios including floating offshore wind turbine analysis.
This work presents an investigation on different methods for the calculation of the angle of attack and the underlying induced velocity on wind turbine blades using data obtained from three-dimensional Computational Fluid Dynamics (CFD). Several methods are examined and their advantages, as well as shortcomings, are presented. The investigations are performed for two 10 MW reference wind turbines under axial inflow conditions, namely the turbines designed in the EU AVATAR and INNWIND.EU projects. The results show that the evaluated methods are in good agreement with each other at the mid-span, though some deviations are observed at the root and tip regions of the blades. This indicates that CFD results can be used for the calibration of induction modeling for Blade Element Momentum (BEM) tools. Moreover, using any of the proposed methods, it is possible to obtain airfoil characteristics for lift and drag coefficients as a function of the angle of attack.
In this paper a detailed comparison of the experimental and numerical results of a scaled wind turbine model in a wind tunnel subjected to fast pitching steps leading to the so-called dynamic inflow effect is presented. We compare results of an Actuator Line LES tool, a vortex code and four engineering models, to the experiment. We perform one and two time constant model analysis of axial wake induction and investigate the overshooting of integral loads. Our results show, that the effect is captured better by the two time constant models than by the one time constant models. Also the experiment and mid-fidelity simulations are best described by a two time constant fit. We identify the best dynamic inflow model to be the 0ye model. Different possibilities for the improvement of dynamic inflow models are discussed.
The analysis of wind turbine aerodynamics requires accurate information about the axial and tangential wake induction as well as the local angle of attack along the blades. In this work we present a new method for obtaining them conveniently from the velocity field. We apply the method to the New Mexico particle image velocimetry (PIV) data set and to computational fluid dynamics (CFD) simulations of the same turbine. This allows the comparison of experimental and numerical results of the mentioned quantities on a rotating wind turbine. The presented results open up new possibilities for the validation of numerical rotor models.
Wind turbines are constantly exposed to wind gusts, dirt particles and precipitation. Depending on the site, surface defects on rotor blades emerge from the first day of operation on. While erosion increases quickly with time, even small surface defects can affect the performance of the wind turbine. Consequently, there is demand for an easily applicable remote monitoring method for rotor blades that is capable of detecting surface defects at an early stage. In this work it is investigated if infrared thermography (IRT) can meet these requirements by visualizing differences in the thermal transport and the corresponding surface temperature of the wall-bounded flow. Firstly, a validation of the IRT method compared to stereoscopic particle image velocimetry measurements is performed comparing both types of experimental results for the boundary layer of a flat plate. Then, the main characteristics of the flow in the wake of generic surface defects on different types of lifting surfaces are studied both experimentally and numerically: temperature gradients behind protruding surface defects on a flat plate and a DU 91-W2-250 profile are studied by means of IRT. The same is done with the wall shear stress from Reynolds-averaged Navier–Stokes simulations of a wind turbine blade. It is consistently observed, both in the experiments and the simulations, that turbulent wedges are formed on the flow downstream of generic surface defects. These wedges provide valuable information about the kind of defects that generate them. At last, experimental and numerical performance measures are taken into account for evaluating the aerodynamic impact of surface defects on rotor blades. We conclude that the IRT method is a suitable remote monitoring technique for detecting surface defects on wind turbines at an early stage.
Wind turbines are constantly exposed to wind gusts, dirt particles, and precipitation. Depending on the site, surface defects on rotor blades emerge from the first day of operation on. While erosion increases quickly with time, even small defects can affect the performance of the wind turbine due to nonlinear interaction. Consequently, there is a demand for a remote and easily applicable condition monitoring method for rotor blades that is capable of detecting surface defects at an early stage. In this work it is analyzed if infrared thermography (IRT) can meet these requirements by visualizing differences in the thermal transport and the corresponding surface temperature of the wall-bounded flow.Firstly, a validation of the IRT method against stereoscopic particle image velocimetry measurements is performed comparing both types of experimental results for the boundary layer of a flat plate. Then, the main characteristics of the flow in the wake of generic surface defects on different types of lifting surfaces are studied both experimentally and numerically: temperature gradients behind protruding surface defects on a flat plate and a DU 91-W2-250 profile are studied by means of IRT. The same is done with the wall shear stress from RANS simulations of a wind turbine blade. It is consistently observed both in the experiments and the simulations that turbulent wedges are formed on the flow downstream of generic surface defects. These wedges provide valuable information about the kind of defect that generates them. At last, experimental and numerical performance measures are taken into account for evaluating the aerodynamic impact of surface defects on rotor blades. We conclude that the IRT method is a suitable remote condition and performance monitoring technique for detecting surface defects on wind turbines at an early stage.