Volltext-Downloads (blau) und Frontdoor-Views (grau)

Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions

  • This work presents an investigation on different methods for the calculation of the angle of attack and the underlying induced velocity on wind turbine blades using data obtained from three-dimensional Computational Fluid Dynamics (CFD). Several methods are examined and their advantages, as well as shortcomings, are presented. The investigations are performed for two 10 MW reference wind turbines under axial inflow conditions, namely the turbines designed in the EU AVATAR and INNWIND.EU projects. The results show that the evaluated methods are in good agreement with each other at the mid-span, though some deviations are observed at the root and tip regions of the blades. This indicates that CFD results can be used for the calibration of induction modeling for Blade Element Momentum (BEM) tools. Moreover, using any of the proposed methods, it is possible to obtain airfoil characteristics for lift and drag coefficients as a function of the angle of attack.

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Iván Herráez, Hamid Rahimi, J. G. Schepers, Wen Zong Shen, Néstor Ramos García
DOI:https://doi.org/10.1016/j.renene.2018.03.018
Parent Title (English):Renewable Energy
Document Type:Article
Language:English
Year of first Publication:2018
Release Date:2025/01/23
Tag:10 MW wind turbine; Angle of Attack (AoA); Axial induction factor; Blade element momentum method (BEM); Computational Fluid Dynamics (CFD)
Volume:125
First Page:866
Last Page:876
Institutes:Fachbereich Technik
Research Focus Areas:nachhaltige Technologien und Prozesse