Volltext-Downloads (blau) und Frontdoor-Views (grau)

Probabilistic Geomagnetic Fingerprinting for Low-Power Orientation Estimation utilising Geometric Models

  • This work presents a new approach to estimate the orientation of wireless sensor nodes (WSN) using geomagnetic sensors. The main contribution is a new algorithm for supervised orientation estimation using geomagnetic fingerprinting. Combined with hierarchical sensing our approach leads to a significant reduction of power consumption.

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Johannes Meyer, Lars Klitzke, Gerd von Cölln
DOI:https://doi.org/10.1109/INDIN41052.2019.8972227
ISBN:978-1-7281-2927-3
ISSN:2378-363X
Parent Title (English):2019 IEEE 17th International Conference on Industrial Informatics (INDIN), 22.07.-25.07.2019, Helsinki (Finland)
Document Type:Conference Proceeding
Language:English
Year of Completion:2019
Release Date:2025/06/18
Tag:Low Power Orientation Estimation; MEMS Sensor models; Probabilistic Geomagnetic Fingerprinting; Supervised Learning
Pagenumber:6
First Page:1601
Last Page:1606
Institute:Fachbereich Technik
Research Focus Area:Industrielle Informatik